-
Firefighting robots should be made responsibly Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-05-23
Benjamin R. van Manen, Eduard Fosch-Villaronga, Merlijn Smits -
Advancing molecular machine learning representations with stereoelectronics-infused molecular graphs Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-05-23
Daniil A. Boiko, Thiago Reschützegger, Benjamin Sanchez-Lengeling, Samuel M. Blau, Gabe Gomes -
Deep spectral component filtering as a foundation model for spectral analysis demonstrated in metabolic profiling Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-05-23
Bingsen Xue, Xinyuan Bi, Zheyi Dong, Yunzhe Xu, Minghui Liang, Xin Fang, Yizhe Yuan, Ruoxi Wang, Shuyu Liu, Rushi Jiao, Yuze Chen, Weitao Zu, Chengxiang Wang, Jianhao Zhang, Jiang Liu, Qin Zhang, Ye Yuan, Midie Xu, Ya Zhang, Yanfeng Wang, Jian Ye, Cheng Jin -
Localizing AI in the global south Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-05-21
Countries in the global south stand to benefit considerably from AI developments and are taking the lead in determining the direction of inclusive AI research efforts.
-
A personalized time-resolved 3D mesh generative model for unveiling normal heart dynamics Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-05-19
Mengyun Qiao, Kathryn A. McGurk, Shuo Wang, Paul M. Matthews, Declan P. O’Regan, Wenjia Bai -
Compositional pretraining improves computational efficiency and matches animal behaviour on complex tasks Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-05-19
David Hocker, Christine M. Constantinople, Cristina Savin -
Back to recurrent processing at the crossroad of transformers and state-space models Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-05-15
Matteo Tiezzi, Michele Casoni, Alessandro Betti, Tommaso Guidi, Marco Gori, Stefano Melacci -
Bridging chemistry and artificial intelligence by a reaction description language Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-05-13
Jiacheng Xiong, Wei Zhang, Yinquan Wang, Jiatao Huang, Yuqi Shi, Mingyan Xu, Manjia Li, Zunyun Fu, Xiangtai Kong, Yitian Wang, Zhaoping Xiong, Mingyue Zheng -
Generating 3D small binding molecules using shape-conditioned diffusion models with guidance Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-05-12
Ziqi Chen, Bo Peng, Tianhua Zhai, Daniel Adu-Ampratwum, Xia Ning -
Lossless data compression by large models Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-05-01
Ziguang Li, Chao Huang, Xuliang Wang, Haibo Hu, Cole Wyeth, Dongbo Bu, Quan Yu, Wen Gao, Xingwu Liu, Ming Li -
Machine learning prediction of enzyme optimum pH Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-04-29
Japheth E. Gado, Matthew Knotts, Ada Y. Shaw, Debora Marks, Nicholas P. Gauthier, Chris Sander, Gregg T. Beckham -
Robot planning with LLMs Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-04-23
Long horizon planning in robotics can benefit from combining classic control methods with the real-world knowledge capabilities of large language models.
-
Optimal transport for generating transition states in chemical reactions Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-04-23
Chenru Duan, Guan-Horng Liu, Yuanqi Du, Tianrong Chen, Qiyuan Zhao, Haojun Jia, Carla P. Gomes, Evangelos A. Theodorou, Heather J. Kulik -
Personalized uncertainty quantification in artificial intelligence Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-04-23
Tapabrata Chakraborti, Christopher R. S. Banerji, Ariane Marandon, Vicky Hellon, Robin Mitra, Brieuc Lehmann, Leandra Bräuninger, Sarah McGough, Cagatay Turkay, Alejandro F. Frangi, Ginestra Bianconi, Weizi Li, Owen Rackham, Deepak Parashar, Chris Harbron, Ben MacArthur -
Sparse and transferable three-dimensional dynamic vascular reconstruction for instantaneous diagnosis Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-04-21
Yinheng Zhu, Yong Wang, Chunxia Di, Hanghang Liu, Fangzhou Liao, Shaohua Ma -
Transforming machines capable of continuous 3D shape morphing and locking Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-04-18
Shiwei Xu, Xiaonan Hu, Ruoxi Yang, Chuanqi Zang, Lei Li, Yue Xiao, Wenbo Liu, Bocheng Tian, Wenbo Pang, Renheng Bo, Qing Liu, Youzhou Yang, Yuchen Lai, Jun Wu, Huichan Zhao, Li Wen, Yihui Zhang -
AI safety for everyone Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-04-17
Bálint Gyevnár, Atoosa Kasirzadeh -
Human-centred design and fabrication of a wearable multimodal visual assistance system Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-04-14
Jian Tang, Yi Zhu, Gai Jiang, Lin Xiao, Wei Ren, Yu Zhou, Qinying Gu, Biao Yan, Jiayi Zhang, Hengchang Bi, Xing Wu, Zhiyong Fan, Leilei Gu -
A predictive machine learning force-field framework for liquid electrolyte development Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-04-01
Sheng Gong, Yumin Zhang, Zhenliang Mu, Zhichen Pu, Hongyi Wang, Xu Han, Zhiao Yu, Mengyi Chen, Tianze Zheng, Zhi Wang, Lifei Chen, Zhenze Yang, Xiaojie Wu, Shaochen Shi, Weihao Gao, Wen Yan, Liang Xiang -
InstaNovo enables diffusion-powered de novo peptide sequencing in large-scale proteomics experiments Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-03-31
Kevin Eloff, Konstantinos Kalogeropoulos, Amandla Mabona, Oliver Morell, Rachel Catzel, Esperanza Rivera-de-Torre, Jakob Berg Jespersen, Wesley Williams, Sam P. B. van Beljouw, Marcin J. Skwark, Andreas Hougaard Laustsen, Stan J. J. Brouns, Anne Ljungars, Erwin M. Schoof, Jeroen Van Goey, Ulrich auf dem Keller, Karim Beguir, Nicolas Lopez Carranza, Timothy P. Jenkins -
A text-guided protein design framework Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-03-27
Shengchao Liu, Yanjing Li, Zhuoxinran Li, Anthony Gitter, Yutao Zhu, Jiarui Lu, Zhao Xu, Weili Nie, Arvind Ramanathan, Chaowei Xiao, Jian Tang, Hongyu Guo, Anima Anandkumar -
Transparency (in training data) is what we want Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-03-24
As more powerful generative AI tools appear on the market, legal debates about the use of copyrighted content to develop such tools are intensifying. To resolve these issues, transparency regarding which copyrighted data have been used and where in the AI training pipeline needs to be a starting point.
-
A disease-specific language model for variant pathogenicity in cardiac and regulatory genomics Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-03-24
Huixin Zhan, Jason H. Moore, Zijun Zhang -
Quantum circuit optimization with AlphaTensor Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-03-20
Francisco J. R. Ruiz, Tuomas Laakkonen, Johannes Bausch, Matej Balog, Mohammadamin Barekatain, Francisco J. H. Heras, Alexander Novikov, Nathan Fitzpatrick, Bernardino Romera-Paredes, John van de Wetering, Alhussein Fawzi, Konstantinos Meichanetzidis, Pushmeet Kohli -
Materiality and risk in the age of pervasive AI sensors Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-03-20
Mona Sloane, Emanuel Moss, Susan Kennedy, Matthew Stewart, Pete Warden, Brian Plancher, Vijay Janapa Reddi -
Embodied large language models enable robots to complete complex tasks in unpredictable environments Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-03-19
Ruaridh Mon-Williams, Gen Li, Ran Long, Wenqian Du, Christopher G. Lucas -
Active exploration and reconstruction of vascular networks using microrobot swarms Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-03-19
Xingzhou Du, Yibin Wang, Junhui Law, Kaiwen Fang, Hui Chen, Yuezhen Liu, Jiangfan Yu -
Towards unveiling sensitive and decisive patterns in explainable AI with a case study in geometric deep learning Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-03-17
Jiajun Zhu, Siqi Miao, Rex Ying, Pan Li -
A comprehensive large-scale biomedical knowledge graph for AI-powered data-driven biomedical research Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-03-17
Yuan Zhang, Xin Sui, Feng Pan, Kaixian Yu, Keqiao Li, Shubo Tian, Arslan Erdengasileng, Qing Han, Wanjing Wang, Jianan Wang, Jian Wang, Donghu Sun, Henry Chung, Jun Zhou, Eric Zhou, Ben Lee, Peili Zhang, Xing Qiu, Tingting Zhao, Jinfeng Zhang -
Synergy-based robotic quadruped leveraging passivity for natural intelligence and behavioural diversity Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-03-17
Francesco Stella, Mickaël M. Achkar, Cosimo Della Santina, Josie Hughes -
Explainable AI reveals Clever Hans effects in unsupervised learning models Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-03-17
Jacob Kauffmann, Jonas Dippel, Lukas Ruff, Wojciech Samek, Klaus-Robert Müller, Grégoire Montavon -
From data chaos to precision medicine Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-03-13
Alexander Schönhuth -
Fast, scale-adaptive and uncertainty-aware downscaling of Earth system model fields with generative machine learning Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-03-13
Philipp Hess, Michael Aich, Baoxiang Pan, Niklas Boers -
Transformers and genome language models Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-03-13
Micaela E. Consens, Cameron Dufault, Michael Wainberg, Duncan Forster, Mehran Karimzadeh, Hani Goodarzi, Fabian J. Theis, Alan Moses, Bo Wang -
Data-driven federated learning in drug discovery with knowledge distillation Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-03-05
Thierry Hanser, Ernst Ahlberg, Alexander Amberg, Lennart T. Anger, Chris Barber, Richard J. Brennan, Alessandro Brigo, Annie Delaunois, Susanne Glowienke, Nigel Greene, Laura Johnston, Daniel Kuhn, Lara Kuhnke, Jean-François Marchaland, Wolfgang Muster, Jeffrey Plante, Friedrich Rippmann, Yogesh Sabnis, Friedemann Schmidt, Ruud van Deursen, Stéphane Werner, Angela White, Joerg Wichard, Tomoya Yukawa -
Bridging the gap between machine confidence and human perceptions Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-03-03
Ming YinUsers often overestimate the accuracy of large language models (LLMs). A new approach examines user perceptions and finds that aligning LLM explanations with the models’ internal confidence improves user perception.
-
A unified deep framework for peptide–major histocompatibility complex–T cell receptor binding prediction Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-02-26
Yunxiang Zhao, Jijun Yu, Yixin Su, You Shu, Enhao Ma, Jing Wang, Shuyang Jiang, Congwen Wei, Dongsheng Li, Zhen Huang, Gong Cheng, Hongguang Ren, Jiannan Feng -
Teaching robots to build simulations of themselves Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-02-25
Yuhang Hu, Jiong Lin, Hod Lipson -
Large language models for scientific discovery in molecular property prediction Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-02-25
Yizhen Zheng, Huan Yee Koh, Jiaxin Ju, Anh T. N. Nguyen, Lauren T. May, Geoffrey I. Webb, Shirui Pan -
Seeking visions for sustainable AI Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-02-24
As countries around the world heavily invest in artificial intelligence (AI) and related infrastructure, the sustainable development of AI technology needs to be higher on the global agenda.
-
Scalable and robust DNA-based storage via coding theory and deep learning Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-02-21
Daniella Bar-Lev, Itai Orr, Omer Sabary, Tuvi Etzion, Eitan Yaakobi -
Categorizing robots by performance fitness into the tree of robots Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-02-21
Robin Jeanne Kirschner, Kübra Karacan, Alessandro Melone, Sami Haddadin -
Goals as reward-producing programs Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-02-21
Guy Davidson, Graham Todd, Julian Togelius, Todd M. Gureckis, Brenden M. Lake -
Bridging peptide presentation and T cell recognition with multi-task learning Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-02-20
Li Su, Duolin Wang, Dong Xu -
Physical benchmarks for testing algorithms Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-02-20
Jakob Zeitler -
Deep lead optimization enveloped in protein pocket and its application in designing potent and selective ligands targeting LTK protein Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-02-20
Shicheng Chen, Odin Zhang, Chenran Jiang, Huifeng Zhao, Xujun Zhang, Mengting Chen, Yun Liu, Qun Su, Zhenxing Wu, Xinyue Wang, Wanglin Qu, Yuanyi Ye, Xin Chai, Ning Wang, Tianyue Wang, Yuan An, Guanlin Wu, Qianqian Yang, Jiean Chen, Wei Xie, Haitao Lin, Dan Li, Chang-Yu Hsieh, Yong Huang, Yu Kang, Tingjun Hou, Peichen Pan -
Large language models that replace human participants can harmfully misportray and flatten identity groups Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-02-17
Angelina Wang, Jamie Morgenstern, John P. Dickerson -
Rethinking machine unlearning for large language models Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-02-17
Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang Yao, Chris Yuhao Liu, Xiaojun Xu, Hang Li, Kush R. Varshney, Mohit Bansal, Sanmi Koyejo, Yang Liu -
Image-based generation for molecule design with SketchMol Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-02-13
Zixu Wang, Yangyang Chen, Pengsen Ma, Zhou Yu, Jianmin Wang, Yuansheng Liu, Xiucai Ye, Tetsuya Sakurai, Xiangxiang Zeng -
Towards a more inductive world for drug repurposing approaches Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-02-13
Jesus de la Fuente, Guillermo Serrano, Uxía Veleiro, Mikel Casals, Laura Vera, Marija Pizurica, Nuria Gómez-Cebrián, Leonor Puchades-Carrasco, Antonio Pineda-Lucena, Idoia Ochoa, Silve Vicent, Olivier Gevaert, Mikel Hernaez -
Benchmarking AI-powered docking methods from the perspective of virtual screening Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-02-13
Shukai Gu, Chao Shen, Xujun Zhang, Huiyong Sun, Heng Cai, Hao Luo, Huifeng Zhao, Bo Liu, Hongyan Du, Yihao Zhao, Chenggong Fu, Silong Zhai, Yafeng Deng, Huanxiang Liu, Tingjun Hou, Yu Kang -
On board with COMET to improve omics prediction models Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-02-12
Paul Fogel, George Luta -
On the caveats of AI autophagy Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-02-10
Xiaodan Xing, Fadong Shi, Jiahao Huang, Yinzhe Wu, Yang Nan, Sheng Zhang, Yingying Fang, Michael Roberts, Carola-Bibiane Schönlieb, Javier Del Ser, Guang Yang -
The promise of generative AI for suicide prevention in India Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-02-06
Tanmoy Chakraborty, Koushik Sinha Deb, Himanshu Kulkarni, Sarah Masud, Suresh Bada Math, Gayatri Oke, Rajesh Sagar, Mona SharmaThe World Health Organization (WHO) estimates a global suicide rate of 9 per 100,000 people, amounting to 720,000 preventable deaths each year. Despite concerted multisectoral efforts, suicide prevention remains a complex public health challenge, shaped by the interplay of socioeconomic, cultural and stress-related factors. In India, the decriminalization of suicide via the 2017 Mental Healthcare Act1
-
Discovering fully semantic representations via centroid- and orientation-aware feature learning Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-02-06
Jaehoon Cha, Jinhae Park, Samuel Pinilla, Kyle L. Morris, Christopher S. Allen, Mark I. Wilkinson, Jeyan Thiyagalingam -
Preserving and combining knowledge in robotic lifelong reinforcement learning Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-02-05
Yuan Meng, Zhenshan Bing, Xiangtong Yao, Kejia Chen, Kai Huang, Yang Gao, Fuchun Sun, Alois Knoll -
Why the carbon footprint of generative large language models alone will not help us assess their sustainability Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-02-03
Leonie N. Bossert, Wulf LohThere is a growing awareness of the substantial environmental costs of large language models (LLMs), but discussing the sustainability of LLMs only in terms of CO2 emissions is not enough. This Comment emphasizes the need to take into account the social and ecological costs and benefits of LLMs as well.
-
Deep learning enhances the prediction of HLA class I-presented CD8+ T cell epitopes in foreign pathogens Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-01-28
Jeremy Wohlwend, Anusha Nathan, Nitan Shalon, Charles R. Crain, Rhoda Tano-Menka, Benjamin Goldberg, Emma Richards, Gaurav D. Gaiha, Regina Barzilay -
A unified cross-attention model for predicting antigen binding specificity to both HLA and TCR molecules Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-01-28
Chenpeng Yu, Xing Fang, Shiye Tian, Hui Liu -
Machine learning solutions looking for PDE problems Nat. Mach. Intell. (IF 18.8) Pub Date : 2025-01-27
Machine learning models are promising approaches to tackle partial differential equations, which are foundational descriptions of many scientific and engineering problems. However, in speaking with several experts about progress in the area, questions are emerging over what realistic advantages machine learning models have and how their performance should be evaluated.