当前位置:
X-MOL 学术
›
Child Dev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Theoretical and Quantitative Disconnect When Modeling Adverse Childhood Experiences Using a Common Factor Framework: An Argument for Causal Indicator Models in Stressor Research
Child Development ( IF 3.9 ) Pub Date : 2025-04-23 , DOI: 10.1111/cdev.14230
Daniel P Moriarity 1 , George M Slavich 1
Child Development ( IF 3.9 ) Pub Date : 2025-04-23 , DOI: 10.1111/cdev.14230
Daniel P Moriarity 1 , George M Slavich 1
Affiliation
Adverse childhood experiences (ACEs) are highly impactful stressors that increase individuals' risk for a plethora of negative developmental and health outcomes. Furthermore, minoritized groups and under‐resourced individuals are at higher risk for ACEs, positioning these stressors as possible mechanisms driving health disparities. Given this fact, a strong methodological foundation is necessary to ensure maximal clinical value. As emphasized by Jensen et al. (https://doi.org/10.1111/cdev.14050), this foundation must begin with rigorous ACEs measurement—a goal that requires careful matching between ACEs measures and the scoring procedures used. To amplify their message while advocating for an alternative approach that may better reflect the conceptualization of ACEs, we write this commentary to highlight the merits of causal indicator models as a better match between theory and methodology.
中文翻译:
使用公因子框架对童年不良经历进行建模时的理论和定量脱节:压力源研究中因果指标模型的论点
不良童年经历 (ACE) 是极具影响力的压力源,会增加个人出现大量负面发育和健康结果的风险。此外,少数群体和资源不足的个体患 ACE 的风险更高,将这些压力源定位为导致健康差异的可能机制。鉴于这一事实,需要强大的方法学基础来确保最大的临床价值。正如 Jensen 等人 (https://doi.org/10.1111/cdev.14050) 所强调的那样,这一基础必须从严格的 ACE 测量开始,这一目标需要 ACE 测量和所使用的评分程序之间仔细匹配。为了放大他们的信息,同时倡导一种可能更好地反映 ACE 概念化的替代方法,我们写这篇评论是为了强调因果指标模型作为理论和方法之间更好匹配的优势。
更新日期:2025-04-23
中文翻译:

使用公因子框架对童年不良经历进行建模时的理论和定量脱节:压力源研究中因果指标模型的论点
不良童年经历 (ACE) 是极具影响力的压力源,会增加个人出现大量负面发育和健康结果的风险。此外,少数群体和资源不足的个体患 ACE 的风险更高,将这些压力源定位为导致健康差异的可能机制。鉴于这一事实,需要强大的方法学基础来确保最大的临床价值。正如 Jensen 等人 (https://doi.org/10.1111/cdev.14050) 所强调的那样,这一基础必须从严格的 ACE 测量开始,这一目标需要 ACE 测量和所使用的评分程序之间仔细匹配。为了放大他们的信息,同时倡导一种可能更好地反映 ACE 概念化的替代方法,我们写这篇评论是为了强调因果指标模型作为理论和方法之间更好匹配的优势。