当前位置:
X-MOL 学术
›
Philosophia Mathematica
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fregean Metasemantics
Philosophia Mathematica ( IF 0.8 ) Pub Date : 2025-05-23 , DOI: 10.1093/philmat/nkaf003
Ori Simchen
Philosophia Mathematica ( IF 0.8 ) Pub Date : 2025-05-23 , DOI: 10.1093/philmat/nkaf003
Ori Simchen
How the semantic significance of numerical discourse gets determined is a metasemantic issue par excellence. At the sub-sentential level, the issue is riddled with difficulties on account of the contested metaphysical status of the subject matter of numerical discourse, i.e., numbers and numerical properties and relations. Setting those difficulties aside, I focus instead on the sentential level, specifically, on obvious affinities between whole numerical and non-numerical sentences and how their significance is determined. From such a perspective, Frege’s 1884 construction of number, while famously mathematically untenable, fares better metasemantically than extant alternatives in the philosophy of mathematics.
中文翻译:
弗雷格元语义学
如何确定数字话语的语义意义是一个卓越的元语义问题。在子感知层面上,由于数字话语的主题(即数字和数字属性和关系)的形而上学地位存在争议,这个问题充满了困难。撇开这些困难不谈,我转而关注感知层面,具体来说,是整个数字句子和非数字句子之间的明显相似性,以及它们的重要性是如何确定的。从这个角度来看,弗雷格 1884 年的数字构造虽然在数学上是站不住脚的,但在元语义上比数学哲学中现有的替代方案要好。
更新日期:2025-05-23
中文翻译:

弗雷格元语义学
如何确定数字话语的语义意义是一个卓越的元语义问题。在子感知层面上,由于数字话语的主题(即数字和数字属性和关系)的形而上学地位存在争议,这个问题充满了困难。撇开这些困难不谈,我转而关注感知层面,具体来说,是整个数字句子和非数字句子之间的明显相似性,以及它们的重要性是如何确定的。从这个角度来看,弗雷格 1884 年的数字构造虽然在数学上是站不住脚的,但在元语义上比数学哲学中现有的替代方案要好。