当前位置:
X-MOL 学术
›
Comput. Methods Appl. Mech. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Extending the Lattice Boltzmann Method to non-linear elastodynamics
Computer Methods in Applied Mechanics and Engineering ( IF 6.9 ) Pub Date : 2025-05-23 , DOI: 10.1016/j.cma.2025.118076
Henning Müller, Erik Faust, Alexander Schlüter, Ralf Müller
Computer Methods in Applied Mechanics and Engineering ( IF 6.9 ) Pub Date : 2025-05-23 , DOI: 10.1016/j.cma.2025.118076
Henning Müller, Erik Faust, Alexander Schlüter, Ralf Müller
This work outlines a Lattice Boltzmann Method (LBM) for geometrically and constitutively non-linear solid mechanics to simulate large deformations under dynamic loading conditions. The method utilises the moment chain approach, where the non-linear constitutive law is incorporated via a forcing term. Stress and deformation measures are expressed in the reference configuration. Finite difference schemes are employed for gradient and divergence computations, and Neumann- and Dirichlet-type boundary conditions are introduced.
中文翻译:
将 Lattice Boltzmann 方法扩展到非线性弹性动力学
这项工作概述了一种用于几何和本构非线性固体力学的晶格玻尔兹曼方法 (LBM),用于模拟动态载荷条件下的大变形。该方法利用矩链方法,其中非线性本构定律通过强迫项合并。应力和变形测量在参考配置中表示。采用有限差分方案进行梯度和散度计算,并引入了 Neumann 和 Dirichlet 型边界条件。
更新日期:2025-05-23
中文翻译:

将 Lattice Boltzmann 方法扩展到非线性弹性动力学
这项工作概述了一种用于几何和本构非线性固体力学的晶格玻尔兹曼方法 (LBM),用于模拟动态载荷条件下的大变形。该方法利用矩链方法,其中非线性本构定律通过强迫项合并。应力和变形测量在参考配置中表示。采用有限差分方案进行梯度和散度计算,并引入了 Neumann 和 Dirichlet 型边界条件。