当前位置: X-MOL 学术Agric. For. Meteorol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
No widespread decline in canopy conductance under elevated atmospheric CO2
Agricultural and Forest Meteorology ( IF 5.6 ) Pub Date : 2025-05-28 , DOI: 10.1016/j.agrformet.2025.110649
Guoqiang Wang, Baolin Xue, Jürgen Knauer, David Helman, Shengli Tao, Yiqi Luo, Junping Wang, Yinglan A, Yuntao Wang, Hua’an Jin, Qingqing Fang, Qiao Wang, Jingfeng Xiao

Leaf stomatal conductance and transpiration rates have been commonly presumed to decline under elevated CO2 concentrations (eCO2) via partial stomatal closure. While this has great implications for the terrestrial carbon and hydrological balances, eCO2 effects on stomatal conductance and transpiration at the ecosystem scale are highly debatable. Here, we used global ecosystem-level measurements from 78 eddy covariance sites to study long-term trends in canopy conductance (Gc). An empirical canopy conductance model was also used to quantify the separate contributions of CO2, gross primary production (GPP), and vapor pressure deficit (D) to the trends in Gc (dGc/dt). We found that the majority of the 78 sites did not have a significant trend in Gc. Only 15 sites exhibited significant dGc/dt trends, while the direction of the trends was not consistent across these sites. GPP contributed the most to the change in Gc. D played an essential role in regulating Gc, and favorable climates and low D increased Gc even under eCO2. Leaf ambient CO2 concentration (Ca) had a consistent and relatively weak yet negative effect on Gc at most sites. Moreover, a state-of-the-art land surface model (CLM5.0) systematically underestimated Gc for these 78 sites and the model also exhibited a stronger role for CO2 but a weaker role for D in regulating Gc. Our results reveal the lack of widespread effects of eCO2 on Gc, and a state-of-the-art land surface model is unable to accurately capture the Gc trends. Our results indicate that the stomatal suppression of evapotranspiration in response to eCO2 may have been overestimated by these earth system models at large scales. Our findings can help improve models and better project future changes in Gc, evapotranspiration, and runoff in the context of rising CO2 and climate change.

中文翻译:

在大气 CO2 升高的情况下,冠层导度没有普遍下降

通常认为,在高 CO2 浓度 (eCO2) 下,叶片气孔导度和蒸腾速率会通过部分气孔关闭而下降。虽然这对陆地碳和水文平衡有很大影响,但 eCO2 对生态系统尺度气孔导度和蒸腾作用的影响是高度值得商榷的。在这里,我们使用了来自 78 个涡流相关站点的全球生态系统水平测量值来研究冠层导度 (Gc) 的长期趋势。还使用经验冠层电导模型来量化 CO2、总初级生产 (GPP) 和蒸气压亏缺 (D) 对 Gc 趋势 (dGc/dt) 的单独贡献。我们发现 78 个位点中的大多数在 Gc 中没有显著的趋势。只有 15 个地点表现出显著的 dGc/dt 趋势,而这些地点的趋势方向并不一致。GPP 对 Gc 的变化贡献最大,D 在调节 Gc 中起着至关重要的作用,即使在 eCO2 下,有利的气候和低 D 也能增加 Gc。在大多数地点,叶片环境 CO2 浓度 (Ca) 对 Gc 的影响是一致的,而且相对较弱,但具有负面影响。此外,最先进的地表模型 (CLM5.0) 系统性地低估了这 78 个地点的 Gc,该模型还显示 CO2 在调节 Gc 方面的作用更强,而 D 的作用较弱。我们的结果表明,eCO2 对 Gc 缺乏广泛的影响,最先进的地表模型无法准确捕捉 Gc 趋势。我们的结果表明,这些地球系统模型在大尺度上可能高估了响应 eCO2 的蒸散气孔抑制作用。 我们的发现可以帮助改进模型,并在 CO2 上升和气候变化的背景下更好地预测 Gc、蒸散和径流的未来变化。
更新日期:2025-05-28
down
wechat
bug