当前位置:
X-MOL 学术
›
Biomass Bioenergy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Biomass-to-biohydrogen conversion: Comprehensive analysis of processes, environmental, and economic implications
Biomass & Bioenergy ( IF 5.8 ) Pub Date : 2025-05-27 , DOI: 10.1016/j.biombioe.2025.107943
Mentari Noviyanti Puteri, Lai Ti Gew, Hwai Chyuan Ong, Long Chiau Ming
Biomass & Bioenergy ( IF 5.8 ) Pub Date : 2025-05-27 , DOI: 10.1016/j.biombioe.2025.107943
Mentari Noviyanti Puteri, Lai Ti Gew, Hwai Chyuan Ong, Long Chiau Ming
Access to clean energy is essential for mitigating global warming and combating climate change, making the transition to renewable energy sources a critical global priority. This review presents a detailed and systematic analysis of biomass-to-biohydrogen conversion pathways, encompassing biological and thermochemical methods, with a focus on their environmental and economic implications. Dark fermentation, photofermentation, and thermochemical processes are thoroughly examined to provide insights into their mechanisms, efficiency, and potential for large-scale applications. The review also explores emerging hybrid technologies, such as combining dark and photofermentation or integrating thermochemical processes with bio-electrochemical systems, which optimize resource utilization and hydrogen yields. Additionally, innovative approaches like magnetic nanoparticles, artificial microbial consortia, and microwave-assisted pyrolysis demonstrate significant potential in overcoming current technological and economic barriers. Through life cycle assessments, this review compares the environmental impacts and sustainability of these pathways, revealing that renewable biomass feedstocks and process efficiencies are pivotal to reducing greenhouse gas (GHG) emissions and environmental burden. Thermochemical processes offer higher hydrogen yields but associated with greater carbon intensity and operational complexity. In contrast, biological routes present lower environmental impact but face constraints in scalability and conversion efficiency. Hybrid systems demonstrate promising balance, though their development remains at early technology readiness levels (TRLs). This review highlights the urgent need for standardized sustainability metrics and interdisciplinary strategies to address pre-treatment challenges, economic feasibility, and policy integration. Finally, this work provides a unified and comparative perspective across biomass-to-biohydrogen pathways, serve as foundation for future innovation and energy policy toward scalable, low-emission, and economically viable hydrogen solutions aligned with global decarbonization goals.
中文翻译:
生物质制生物氢转化:工艺、环境和经济影响的综合分析
获得清洁能源对于缓解全球变暖和应对气候变化至关重要,这使得向可再生能源过渡成为关键的全球优先事项。本综述对生物质到生物氢的转化途径进行了详细而系统的分析,包括生物和热化学方法,重点关注它们的环境和经济影响。对暗发酵、光发酵和热化学过程进行了彻底的研究,以深入了解它们的机制、效率和大规模应用的潜力。该综述还探讨了新兴的混合技术,例如将暗发酵和光发酵相结合或将热化学过程与生物电化学系统集成,从而优化资源利用和氢气产量。此外,磁性纳米颗粒、人工微生物群落和微波辅助热解等创新方法在克服当前技术和经济障碍方面显示出巨大潜力。通过生命周期评估,本综述比较了这些途径的环境影响和可持续性,揭示了可替代生物质原料和工艺效率对于减少温室气体 (GHG) 排放和环境负担至关重要。热化学工艺可提供更高的氢气产量,但与更高的碳强度和作复杂性相关。相比之下,生物途径对环境的影响较小,但在可扩展性和转换效率方面面临限制。混合动力系统表现出有希望的平衡,尽管它们的发展仍处于早期技术就绪水平 (TRL)。 本综述强调了迫切需要标准化的可持续性指标和跨学科策略来应对处理前挑战、经济可行性和政策整合。最后,这项工作提供了生物质到生物氢途径的统一和比较视角,为未来创新和能源政策奠定了基础,以实现与全球脱碳目标相一致的可扩展、低排放和经济可行的氢解决方案。
更新日期:2025-05-27
中文翻译:

生物质制生物氢转化:工艺、环境和经济影响的综合分析
获得清洁能源对于缓解全球变暖和应对气候变化至关重要,这使得向可再生能源过渡成为关键的全球优先事项。本综述对生物质到生物氢的转化途径进行了详细而系统的分析,包括生物和热化学方法,重点关注它们的环境和经济影响。对暗发酵、光发酵和热化学过程进行了彻底的研究,以深入了解它们的机制、效率和大规模应用的潜力。该综述还探讨了新兴的混合技术,例如将暗发酵和光发酵相结合或将热化学过程与生物电化学系统集成,从而优化资源利用和氢气产量。此外,磁性纳米颗粒、人工微生物群落和微波辅助热解等创新方法在克服当前技术和经济障碍方面显示出巨大潜力。通过生命周期评估,本综述比较了这些途径的环境影响和可持续性,揭示了可替代生物质原料和工艺效率对于减少温室气体 (GHG) 排放和环境负担至关重要。热化学工艺可提供更高的氢气产量,但与更高的碳强度和作复杂性相关。相比之下,生物途径对环境的影响较小,但在可扩展性和转换效率方面面临限制。混合动力系统表现出有希望的平衡,尽管它们的发展仍处于早期技术就绪水平 (TRL)。 本综述强调了迫切需要标准化的可持续性指标和跨学科策略来应对处理前挑战、经济可行性和政策整合。最后,这项工作提供了生物质到生物氢途径的统一和比较视角,为未来创新和能源政策奠定了基础,以实现与全球脱碳目标相一致的可扩展、低排放和经济可行的氢解决方案。