当前位置:
X-MOL 学术
›
Biomass Bioenergy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synergistic catalytic graphitization and pore orientation design in biomass-derived porous carbons for electrochemical applications
Biomass & Bioenergy ( IF 5.8 ) Pub Date : 2025-05-29 , DOI: 10.1016/j.biombioe.2025.108021
Jiajun Wang, Zhenjie Sun, Songtao Wu, Xiaodong You, Chen Yang, Mingjie Xiong, Zhenming Li, Jialong Chen, Yuan Liu, Feiqiang Guo
Biomass & Bioenergy ( IF 5.8 ) Pub Date : 2025-05-29 , DOI: 10.1016/j.biombioe.2025.108021
Jiajun Wang, Zhenjie Sun, Songtao Wu, Xiaodong You, Chen Yang, Mingjie Xiong, Zhenming Li, Jialong Chen, Yuan Liu, Feiqiang Guo
The development of carbon-based electrode materials from biomass is a significant trend in the advancement of supercapacitors. Achieving the synergistic construction of porous structures and graphitization is crucial for enhancing their energy storage properties. In this study, peanut shells serve as a biomass feedstock, and synergistic catalytic graphitization and oriented pore generation are designed by employing the bifunctional catalytic activator K2 FeO4 and the pore templating agent CaCO3 . The presence of K2 FeO4 significantly contributes to enhancing the graphitization degree and the formation of micropores, while the presence of CaCO3 directly promotes the formation of mesopores in an oriented manner. The obtained PS@CaFe-15 % exhibits a hierarchical pore structure containing both well-developed microporous and mesoporous structures with a high specific surface area of 2712.85 m2 g−1 . Iron nanoparticles are generated during the activation process, which catalytically form numerous graphitic regions around them. Consequently, an optimal level of graphitization is achieved, with an ID /IG ratio of 0.93. In a three-electrode system, a capacitance of 339.25 F g−1 is achieved using PS@CaFe-15 % as the electrode material at a current density of 1 A g−1 . This capacitance is sustained at 295 F g−1 when tested at 10 A g−1 , demonstrating a high capacitance retention of 86.96 %.
中文翻译:
用于电化学应用的生物质衍生多孔碳中的协同催化石墨化和孔位设计
利用生物质开发碳基电极材料是超级电容器发展的重要趋势。实现多孔结构和石墨化的协同构建对于增强其储能性能至关重要。在本研究中,花生壳作为生物质原料,采用双功能催化活化剂 K2FeO4 和孔模板剂 CaCO3 设计了协同催化石墨化和定向孔隙生成。K2FeO4 的存在显着有助于提高石墨化程度和微孔的形成,而 CaCO3 的存在直接以定向方式促进介孔的形成。获得的 PS@CaFe-15 % 表现出多级孔结构,包含发达的微孔和介孔结构,比表面积高达 2712.85 m2 g-1。铁纳米颗粒在活化过程中产生,这些颗粒在它们周围催化形成许多石墨区域。因此,实现了最佳的石墨化水平,ID/IG 比值为 0.93。在三电极系统中,以 PS@CaFe-15% 为电极材料,电流密度为 1 A g-1,可实现 339.25 F g-1 的电容。在 10 A g-1 下测试时,该电容维持在 295 F g-1,表现出 86.96% 的高电容保持率。
更新日期:2025-05-29
中文翻译:

用于电化学应用的生物质衍生多孔碳中的协同催化石墨化和孔位设计
利用生物质开发碳基电极材料是超级电容器发展的重要趋势。实现多孔结构和石墨化的协同构建对于增强其储能性能至关重要。在本研究中,花生壳作为生物质原料,采用双功能催化活化剂 K2FeO4 和孔模板剂 CaCO3 设计了协同催化石墨化和定向孔隙生成。K2FeO4 的存在显着有助于提高石墨化程度和微孔的形成,而 CaCO3 的存在直接以定向方式促进介孔的形成。获得的 PS@CaFe-15 % 表现出多级孔结构,包含发达的微孔和介孔结构,比表面积高达 2712.85 m2 g-1。铁纳米颗粒在活化过程中产生,这些颗粒在它们周围催化形成许多石墨区域。因此,实现了最佳的石墨化水平,ID/IG 比值为 0.93。在三电极系统中,以 PS@CaFe-15% 为电极材料,电流密度为 1 A g-1,可实现 339.25 F g-1 的电容。在 10 A g-1 下测试时,该电容维持在 295 F g-1,表现出 86.96% 的高电容保持率。