当前位置:
X-MOL 学术
›
Biomass Bioenergy
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A comprehensive review of recent innovations in transforming bio-oil into bioplastics for sustainable product development within a circular economy
Biomass & Bioenergy ( IF 5.8 ) Pub Date : 2025-05-27 , DOI: 10.1016/j.biombioe.2025.108028
Crossline Ajona, Ayyadurai Saravanakumar
Biomass & Bioenergy ( IF 5.8 ) Pub Date : 2025-05-27 , DOI: 10.1016/j.biombioe.2025.108028
Crossline Ajona, Ayyadurai Saravanakumar
The environmental impact of non-renewable energy sources such as fossil fuels and petrochemical plastics is increasing and needs a shift towards sustainable materials production. This review focuses on advanced technologies in pyrolysis processes mainly catalytic and co-pyrolysis processes that convert waste streams into valuable products. Microwave-assisted pyrolysis and catalytic improvements are two important advancements that enable better bio-oil properties, the removal of impurities, and scalability. Bio-oil is rich in organic compounds and is an ideal platform for synthesizing biodegradable polymers such as polyhydroxyalkanoates (PHAs) as an environment-friendly replacement for petroleum-derived plastics. Co-pyrolysis of biomass with plastic waste has been shown effective in improving bio-oil quality as well as dealing with waste management challenges. Additional utilization of pyrolysis products in bioplastic production is made possible through other chemical transformations, which include ring-opening polymerization and cross-linking. However, despite these advancements, important hurdles remain, including scaling up manufacturing, keeping prices affordable, and maintaining product consistency. These challenges require the interaction of technology advancement, policy implementation, and market adaptation. This review highlights pyrolysis as a crucial process in circular economy models, producing bio-oil that can be converted into sustainable materials like bioplastics, thereby supporting climate change mitigation efforts.
中文翻译:
全面回顾将生物油转化为生物塑料以实现循环经济中可持续产品开发的最新创新
化石燃料和石化塑料等不可再生能源对环境的影响越来越大,需要转向可持续材料生产。这篇综述重点介绍了热解过程中的先进技术,主要是将废物流转化为有价值的产品的催化和共热解过程。微波辅助热解和催化改进是两项重要的进步,可实现更好的生物油性能、去除杂质和可扩展性。Bio-oil 富含有机化合物,是合成可生物降解聚合物(如聚羟基脂肪酸酯 (PHA))的理想平台,可替代石油衍生塑料。生物质与塑料废弃物的共热解已被证明可有效提高生物油质量以及应对废弃物管理挑战。通过其他化学转化,包括开环聚合和交联,可以在生物塑料生产中额外利用热解产物。然而,尽管取得了这些进步,但仍然存在重要障碍,包括扩大制造规模、保持价格合理以及保持产品一致性。这些挑战需要技术进步、政策实施和市场适应的相互作用。这篇综述强调了热解是循环经济模式中的关键过程,它生产的生物油可以转化为生物塑料等可持续材料,从而支持减缓气候变化的努力。
更新日期:2025-05-27
中文翻译:

全面回顾将生物油转化为生物塑料以实现循环经济中可持续产品开发的最新创新
化石燃料和石化塑料等不可再生能源对环境的影响越来越大,需要转向可持续材料生产。这篇综述重点介绍了热解过程中的先进技术,主要是将废物流转化为有价值的产品的催化和共热解过程。微波辅助热解和催化改进是两项重要的进步,可实现更好的生物油性能、去除杂质和可扩展性。Bio-oil 富含有机化合物,是合成可生物降解聚合物(如聚羟基脂肪酸酯 (PHA))的理想平台,可替代石油衍生塑料。生物质与塑料废弃物的共热解已被证明可有效提高生物油质量以及应对废弃物管理挑战。通过其他化学转化,包括开环聚合和交联,可以在生物塑料生产中额外利用热解产物。然而,尽管取得了这些进步,但仍然存在重要障碍,包括扩大制造规模、保持价格合理以及保持产品一致性。这些挑战需要技术进步、政策实施和市场适应的相互作用。这篇综述强调了热解是循环经济模式中的关键过程,它生产的生物油可以转化为生物塑料等可持续材料,从而支持减缓气候变化的努力。