当前位置:
X-MOL 学术
›
Energy Build.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Sustainable thermoelectric energy harvesting in fly ash bamboo fiber reinforced concrete for smart infrastructure
Energy and Buildings ( IF 6.6 ) Pub Date : 2025-05-27 , DOI: 10.1016/j.enbuild.2025.115927
Yong Luo, Chunpeng Liu, Dianah Mazlan, S.S. Naveen Kumar
Energy and Buildings ( IF 6.6 ) Pub Date : 2025-05-27 , DOI: 10.1016/j.enbuild.2025.115927
Yong Luo, Chunpeng Liu, Dianah Mazlan, S.S. Naveen Kumar
Concrete is widely used in infrastructure, and its waste heat recovery for thermoelectric power generation holds remarkable potential for energy utilization. However, optimizing the thermal conductivity of concrete to enhance thermoelectric conversion efficiency remains a critical challenge. This study investigates C40 concrete modified with bamboo fibers and fly ash, evaluating the thermal conductivity and heat transfer characteristics of different concrete types. On the basis of the findings, thermoelectric generator (TEG) modules were embedded at the concrete interface, and three composite concrete structures were developed: fly ash-plain reinforced concrete, fly ash-bamboo fiber reinforced concrete, and plain-bamboo fiber reinforced concrete. The mechanical properties and electrical output of these structures were tested, and finite element simulations were conducted to assess the effects of ground temperature, relative humidity, and wind speed on thermoelectric generation efficiency. Experimental results showed that fly ash-plain reinforced concrete exhibited the highest compressive strength, while bamboo fiber reinforced concrete demonstrated superior tensile strength, highlighting the toughening effect of bamboo fibers and the micro-filling effect of fly ash. Bamboo fiber reinforced concrete had the lowest thermal conductivity coefficient, reducing it by 68.8 % compared with plain concrete, thus exhibiting excellent thermal insulation performance. The “plain-bamboo fiber concrete” structure was found to maximize the temperature gradient, thereby enhancing thermoelectric conversion efficiency. Simulation analysis further revealed that ground temperature is the dominant factor affecting thermoelectric performance. This study elucidates the relationship between the thermal properties of concrete and thermoelectric generation efficiency, providing theoretical support for renewable energy utilization and the design of smart, sustainable infrastructure. Future work will focus on scaling up the system for real-world applications and integrating phase-change materials to improve thermal regulation further.
中文翻译:
用于智能基础设施的粉煤灰竹纤维增强混凝土的可持续热电能量收集
混凝土广泛用于基础设施,其用于热电发电的余热回收具有巨大的能源利用潜力。然而,优化混凝土的导热系数以提高热电转换效率仍然是一个关键挑战。本研究调查了用竹纤维和粉煤灰改性的 C40 混凝土,评估了不同类型混凝土的导热性和传热特性。基于研究结果,在混凝土界面处嵌入热电发电机 (TEG) 模块,并开发了三种复合混凝土结构:粉煤灰-平原钢筋混凝土、粉煤灰-竹纤维钢筋混凝土和素竹纤维钢筋混凝土。测试了这些结构的机械性能和电输出,并进行了有限元模拟以评估地面温度、相对湿度和风速对热电发电效率的影响。试验结果表明,粉煤灰-平原钢筋混凝土的抗压强度最高,而竹纤维钢筋混凝土表现出优异的抗拉强度,凸显了竹纤维的增韧作用和粉煤灰的微填充作用。竹纤维增强混凝土的导热系数最低,与普通混凝土相比降低了 68.8 %,因此表现出优异的保温性能。发现“素竹纤维混凝土”结构使温度梯度最大化,从而提高热电转换效率。仿真分析进一步表明,地温是影响热电性能的主导因素。 本研究阐明了混凝土的热性能与热电发电效率之间的关系,为可再生能源利用和智能、可持续基础设施的设计提供了理论支持。未来的工作将侧重于扩大系统以用于实际应用,并集成相变材料以进一步改善热调节。
更新日期:2025-05-27
中文翻译:

用于智能基础设施的粉煤灰竹纤维增强混凝土的可持续热电能量收集
混凝土广泛用于基础设施,其用于热电发电的余热回收具有巨大的能源利用潜力。然而,优化混凝土的导热系数以提高热电转换效率仍然是一个关键挑战。本研究调查了用竹纤维和粉煤灰改性的 C40 混凝土,评估了不同类型混凝土的导热性和传热特性。基于研究结果,在混凝土界面处嵌入热电发电机 (TEG) 模块,并开发了三种复合混凝土结构:粉煤灰-平原钢筋混凝土、粉煤灰-竹纤维钢筋混凝土和素竹纤维钢筋混凝土。测试了这些结构的机械性能和电输出,并进行了有限元模拟以评估地面温度、相对湿度和风速对热电发电效率的影响。试验结果表明,粉煤灰-平原钢筋混凝土的抗压强度最高,而竹纤维钢筋混凝土表现出优异的抗拉强度,凸显了竹纤维的增韧作用和粉煤灰的微填充作用。竹纤维增强混凝土的导热系数最低,与普通混凝土相比降低了 68.8 %,因此表现出优异的保温性能。发现“素竹纤维混凝土”结构使温度梯度最大化,从而提高热电转换效率。仿真分析进一步表明,地温是影响热电性能的主导因素。 本研究阐明了混凝土的热性能与热电发电效率之间的关系,为可再生能源利用和智能、可持续基础设施的设计提供了理论支持。未来的工作将侧重于扩大系统以用于实际应用,并集成相变材料以进一步改善热调节。