当前位置: X-MOL 学术Miner. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
3D-printed polyamide-H2TiO3 composite for selective lithium adsorption: Insights from experimental and theoretical dynamic simulations studies
Minerals Engineering ( IF 4.9 ) Pub Date : 2025-05-29 , DOI: 10.1016/j.mineng.2025.109470
Ekaterina Bandina, Mohammed Elkabous, Anna Iurchenkova, Youssef El Ouardi, Eveliina Repo

Global decarbonization has increased the demand for lithium-ion batteries (LIBs), leading to a high demand for lithium a critical raw material in the EU. Efficient lithium recovery, especially from water sources, is essential due to the growing demand need for LIB recycling. Adsorption technology is effective for this purpose, but traditional powder adsorbents present operational challenges. To overcome this, 3D printing allows for the preparation of solid monolith adsorbents with improved mechanical stability and reusability. In this work, a polyamide-lithium titanium oxide composite (PA2200-Li2TiO3) was 3D-printed using selective laser sintering technology. The composite was characterized using SEM-EDS, TEM, XRD, Raman spectroscopy, TGA and XPS. The adsorbent exhibited up to 87 % lithium adsorption efficiency at a concentration of 20 mg/L and showed high selectivity for lithium over sodium (Li/Na ≈ 37.4) and potassium (Li/K ≈ 60.5). A mechanism involving Li+ ion adsorption and transport through Li2TiO3’s structural channels has been proposed, with dynamic simulations suggesting that lithium ions preferentially diffuse through these channels due to their geometric and energetic configuration. Thermodynamic studies confirmed an endothermic adsorption process with enhanced performance at higher temperatures. Regeneration tests demonstrated only a 7 % reduction in adsorption efficiency after three cycles, indicating structural stability and the potential for scalable application in lithium recovery processes.

中文翻译:

用于选择性锂吸附的 3D 打印聚酰胺-H2TiO3 复合材料:来自实验和理论动力学模拟研究的见解

全球脱碳增加了对锂离子电池 (LIB) 的需求,导致对锂(欧盟的关键原材料)的需求量很大。由于对 LIB 回收的需求不断增长,高效的锂回收,尤其是从水源中回收的锂,至关重要。吸附技术对此很有效,但传统的粉末吸附剂存在作挑战。为了克服这个问题,3D 打印可以制备具有更高机械稳定性和可重用性的固体整体吸附剂。在这项工作中,使用选择性激光烧结技术 3D 打印了聚酰胺-锂钛氧化物复合材料 (PA2200-Li2TiO3)。使用 SEM-EDS、TEM、XRD、拉曼光谱、TGA 和 XPS 对复合材料进行了表征。该吸附剂在 20 mg/L 浓度下表现出高达 87% 的锂吸附效率,并且对锂的选择性高于钠 (Li/Na ≈ 37.4) 和钾 (Li/K ≈ 60.5)。已经提出了一种涉及 Li+ 离子吸附和通过 Li2TiO3 结构通道传输的机制,动力学模拟表明,由于锂离子的几何和能量配置,锂离子优先通过这些通道扩散。热力学研究证实了吸热吸附过程在较高温度下具有增强的性能。再生测试表明,三个循环后吸附效率仅降低 7%,表明结构稳定性和在锂回收过程中的可扩展应用潜力。
更新日期:2025-05-29
down
wechat
bug