当前位置:
X-MOL 学术
›
Mech. Syst. Signal Process.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A multi-interaction electromechanical coupling dynamic model and lateral-torsional vibration mechanism of the propulsion shaft system
Mechanical Systems and Signal Processing ( IF 7.9 ) Pub Date : 2025-05-30 , DOI: 10.1016/j.ymssp.2025.112920
Yajun Xu, Xinbin Li, Jing Liu, Jianyu Liu, Guang Pan
Mechanical Systems and Signal Processing ( IF 7.9 ) Pub Date : 2025-05-30 , DOI: 10.1016/j.ymssp.2025.112920
Yajun Xu, Xinbin Li, Jing Liu, Jianyu Liu, Guang Pan
The usage of an electrical propulsion energy system brings not only a wide speed range and large diving depth to the underwater vehicle but also the new electromechanical features of the PSS (Propulsion Shaft System). Revelation of the electromechanical coupling mechanisms and vibration characteristics is the key to the vibration suppression of PSS. This work presents a reinforced electromechanical dynamic modeling method of the PSS. The inductances and permanent magnet flux linkage functions of the IPMSM (Interior Permanent Magnet Synchronous Motor) based on the MWFA (Modified Winding Function Approach) are derived and introduced into the coupling model to consider the effects of the mechanical vibration on the electric system and the IPMSM of PSS. The electromechanical model fully considers the effects of the non-ideal currents with time harmonics, time-varying inductances and flux linkage with spatial harmonics, fluctuated electromagnetic torque, and UMP (Unbalanced Magnetic Pull). Based on the model, the characteristics of the electromagnetic excitations are studied. The time waveforms and spectra of the rotor angular velocities and lateral accelerations are compared to study the coupling mechanisms of the lateral and torsional vibrations. The results indicate that the UMP strengthens the coupling effects between the lateral and torsional vibrations and new harmonics are emerged on spectra due to the electromechanical coupling.
中文翻译:
推进轴系统多相互作用机电耦合动力学模型与横向扭转振动机构
电力推进能源系统的使用不仅为水下航行器带来了宽的速度范围和较大的潜水深度,而且还带来了 PSS(推进轴系统)的新机电功能。揭示机电耦合机制和振动特性是 PSS 振动抑制的关键。这项工作提出了一种 PSS 的增强机电动力学建模方法。推导了基于 MWFA(Modified Winding Function Approach,改进绕组函数方法)的 IPMSM(内部永磁同步电机)的电感和永磁磁通联动函数,并将其引入耦合模型,以考虑机械振动对电气系统的影响和 PSS 的 IPMSM。机电模型充分考虑了非理想电流对时间谐波、时变电感和磁通量与空间谐波、波动电磁转矩和 UMP(不平衡磁拉力)的影响。基于该模型,研究了电磁激励的特性。比较了转子角速度和横向加速度的时间波形和频谱,以研究横向和扭转振动的耦合机制。结果表明,UMP 增强了横向振动和扭转振动之间的耦合效应,并且由于机电耦合,在频谱上出现了新的谐波。
更新日期:2025-05-30
中文翻译:

推进轴系统多相互作用机电耦合动力学模型与横向扭转振动机构
电力推进能源系统的使用不仅为水下航行器带来了宽的速度范围和较大的潜水深度,而且还带来了 PSS(推进轴系统)的新机电功能。揭示机电耦合机制和振动特性是 PSS 振动抑制的关键。这项工作提出了一种 PSS 的增强机电动力学建模方法。推导了基于 MWFA(Modified Winding Function Approach,改进绕组函数方法)的 IPMSM(内部永磁同步电机)的电感和永磁磁通联动函数,并将其引入耦合模型,以考虑机械振动对电气系统的影响和 PSS 的 IPMSM。机电模型充分考虑了非理想电流对时间谐波、时变电感和磁通量与空间谐波、波动电磁转矩和 UMP(不平衡磁拉力)的影响。基于该模型,研究了电磁激励的特性。比较了转子角速度和横向加速度的时间波形和频谱,以研究横向和扭转振动的耦合机制。结果表明,UMP 增强了横向振动和扭转振动之间的耦合效应,并且由于机电耦合,在频谱上出现了新的谐波。