Nature Genetics ( IF 31.7 ) Pub Date : 2025-06-02 , DOI: 10.1038/s41588-025-02197-z
Zheqi Li, Guillermo Peluffo, Laura E. Stevens, Xintao Qiu, Marco Seehawer, Amatullah Tawawalla, Xiao-Yun Huang, Shawn B. Egri, Shaunak Raval, Maeve McFadden, Clive S. D’Santos, Eva Papachristou, Natalie L. Kingston, Jun Nishida, Kyle E. Evans, Ji-Heui Seo, Kendell Clement, Daniel Temko, Muhammad Ekram, Rong Li, Matthew G. Rees, Melissa M. Ronan, Jennifer A. Roth, Anton Simeonov, Stephen C. Kales, Ganesha Rai, Madhu Lal-Nag, David J. Maloney, Ajit Jadhav, Franziska Michor, Alex Meissner, Justin M. Balko, Jason S. Carroll, Matthew L. Freedman, Jacob D. Jaffe, Malvina Papanastasiou, Henry W. Long, Kornelia Polyak
|
Basal breast cancer is a subtype with a poor prognosis in need of more effective therapeutic approaches. Here we describe a unique role for the KDM4C histone lysine demethylase in KDM4C-amplified basal breast cancers, where KDM4C inhibition reshapes chromatin and transcriptomic landscapes without substantial alterations of its canonical substrates, trimethylated histone H3 lysine 9 (H3K9me3) and lysine 36 (H3K36me3). Rather, KDM4C loss causes proteolytic cleavage of histone H3 mediated by cathepsin L (CTSL), resulting in decreased glutamate–cysteine ligase expression and increased reactive oxygen species. CTSL is recruited to the chromatin by the grainyhead-like 2 (GRHL2) transcription factor that is methylated at lysine 453 following KDM4C inhibition, triggering CTSL histone clipping activity. Deletion of CTSL rescued KDM4-loss-mediated tumor suppression. Our study reveals a function for KDM4C that connects cellular redox regulation and chromatin remodeling.
中文翻译:

KDM4C 抑制通过促进组织蛋白酶 L 介导的组蛋白 H3 裂解来阻断基底乳腺癌的肿瘤生长
基底乳腺癌是一种预后不良的亚型,需要更有效的治疗方法。在这里,我们描述了 KDM4C 组蛋白赖氨酸去甲基化酶在 KDM4C 扩增的基础乳腺癌中的独特作用,其中 KDM4C 抑制重塑染色质和转录组景观,而没有实质性改变其经典底物,三甲基化组蛋白 H3 赖氨酸 9 (H3K9me3) 和赖氨酸 36 (H3K36me3)。相反,KDM4C 缺失会导致组织蛋白酶 L (CTSL) 介导的组蛋白 H3 的蛋白水解裂解,导致谷氨酸-半胱氨酸连接酶表达降低和活性氧增加。CTSL 被粒状头样 2 (GRHL2) 转录因子募集到染色质中,该转录因子在 KDM4C 抑制后在赖氨酸 453 位点甲基化,触发 CTSL 组蛋白剪切活性。CTSL 缺失挽救了 KDM4 缺失介导的肿瘤抑制。我们的研究揭示了 KDM4C 连接细胞氧化还原调节和染色质重塑的功能。