当前位置: X-MOL 学术BMJ › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficiency must not compromise trustworthiness in rating certainty and formulating recommendations in AI era
The BMJ ( IF 93.6 ) Pub Date : 2025-06-03 , DOI: 10.1136/bmj.r1105
Jing Wu, Gordon Guyatt, Liang Yao

The principles of Core GRADE provide an important basis for achieving successful AI assisted evidence certainty rating and recommendation formulation, write Jing Wu , Gordon Guyatt , and Liang Yao Artificial intelligence (AI) is rapidly reshaping how we conduct medical research, from synthesising evidence to developing clinical guidelines.1234 Tasks that once took months—or even years—can now be accelerated using AI tools. These innovations span literature screening and data extraction,5 risk of bias assessment,6 and the generation of certainty of evidence ratings.7 The potential is clear: faster processes, reduced costs, and near real time updates. But in an environment increasingly powered by AI, we need to preserve thoughtful, transparent, and patient centred judgment when rating the certainty of …

中文翻译:

在 AI 时代,效率不得损害评级确定性和制定建议的可信度

Jing Wu、Gordon Guyatt 和 Liang Yao 写道,Core GRADE 的原则为成功实现 AI 辅助证据质量评级和推荐制定提供了重要基础人工智能 (AI) 正在迅速改变我们进行医学研究的方式,从综合证据到制定临床指南。1234 曾经需要数月甚至数年的任务现在可以使用 AI 工具加速。这些创新涵盖文献筛选和数据提取 5、偏倚风险评估 6 以及证据评级质量的生成 7。潜力是显而易见的:更快的流程、更低的成本和近乎实时的更新。但在一个日益由 AI 驱动的环境中,我们需要在评估 AI 的确定性时保持深思熟虑、透明和以患者为中心的判断......
更新日期:2025-06-03
down
wechat
bug