当前位置: X-MOL 学术Journal of Marketing › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
EXPRESS: New Tools, New Rules: A Practical Guide to Effective and Responsible GenAI Use for Surveys and Experiments Research
Journal of Marketing ( IF 11.5 ) Pub Date : 2025-06-02 , DOI: 10.1177/00222429251349882
Simon J. Blanchard, Nofar Duani, Aaron M. Garvey, Oded Netzer, Travis Tae Oh

Generative Artificial Intelligence (GenAI) tools based on Large Language Models (LLMs) are quickly reshaping how researchers conduct surveys and experiments. From reviewing the literature and designing instruments, to administering studies, coding data, and interpreting results, these tools offer substantial opportunities to improve research productivity and advance methodology. Yet with this potential comes a critical challenge: researchers often use these systems without fully understanding how they work. This article aims to provide a practical guide for effective and responsible GenAI use in primary research. We begin by explaining how GenAI systems operate, highlighting the gap between their intuitive interfaces and the underlying model architectures. We then examine different use cases throughout the research process, both the opportunities and associated risks at each stage. Throughout our review, we provide flexible tips for best practice and rules for effective and responsible GenAI use, particularly in areas pertaining to ensuring the validity of GenAI coded responses. In doing so, we hope to help researchers integrate GenAI into their workflows in a transparent, rigorous, and ethically sound manner. Our accompanying website (questionableresearch.ai) provides supporting materials, including reproducible coding templates in R and SPSS and sample pre-registrations.

中文翻译:

EXPRESS:新工具,新规则:有效和负责任地使用 GenAI 进行调查和实验研究的实用指南

基于大型语言模型 (LLM) 的生成式人工智能 (GenAI) 工具正在迅速改变研究人员进行调查和实验的方式。从回顾文献和设计工具,到管理研究、编码数据和解释结果,这些工具为提高研究效率和改进方法提供了大量机会。然而,这种潜力也带来了一个关键挑战:研究人员经常在不完全了解它们的工作原理的情况下使用这些系统。本文旨在为在初级研究中有效和负责任地使用 GenAI 提供实用指南。我们首先解释了 GenAI 系统的运行方式,强调了其直观界面与底层模型架构之间的差距。然后,我们检查整个研究过程中的不同用例,包括每个阶段的机会和相关风险。在整个审查过程中,我们提供了灵活的最佳实践提示和有效和负责任地使用 GenAI 的规则,特别是在与确保 GenAI 编码响应的有效性有关的领域。在此过程中,我们希望帮助研究人员以透明、严格和合乎道德的方式将 GenAI 集成到他们的工作流程中。我们随附的网站 (questionableresearch.ai) 提供支持材料,包括 R 和 SPSS 中的可重复编码模板以及样本预注册。
更新日期:2025-06-02
down
wechat
bug