当前位置: X-MOL 学术J. Hydrol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A watershed-scale rainfall infiltration model incorporating water and energy constraints
Journal of Hydrology ( IF 5.9 ) Pub Date : 2025-05-27 , DOI: 10.1016/j.jhydrol.2025.133561
Baowei Yan, Jianbo Chang

In the hydrological cycle, infiltration is a fundamental process that connects surface water with groundwater. Presently, the numerical computation of infiltration equations grounded in physical theories is intricate and frequently constrained by stability challenges. Empirical infiltration equations, which are formulated from experiments conducted at either point or field scales, still necessitate additional methodologies for effective hydrological modeling. Consequently, there is a pressing demand for an innovative watershed-scale infiltration theory to further the discipline of hydrology. This research introduces a watershed-scale rainfall infiltration equation incorporating water and energy constraints. This equation accurately represents the rainfall infiltration process at the watershed scale, and its derivative contributes to an enhanced comprehension of infiltration dynamics. Furthermore, the equation was validated utilizing the CAMELS-US dataset, which encompasses 350 watersheds. The average Nash-Sutcliffe Efficiency (NSE) during the validation period indicated an improvement of 0.07 relative to the SCS-CN model, illustrating its robust adaptability across diverse watersheds and climatic conditions. These results offer valuable insights for the advancement of foundational hydrological theories.

中文翻译:

包含水和能源约束的流域规模降雨渗透模型

在水文循环中,渗透是将地表水和地下水连接起来的基本过程。目前,基于物理理论的渗透方程的数值计算是复杂的,并且经常受到稳定性挑战的限制。经验渗透方程是根据在点或现场尺度上进行的实验制定的,仍然需要额外的方法来进行有效的水文建模。因此,迫切需要一种创新的流域尺度渗透理论,以进一步推动水文学学科的发展。本研究引入了一个流域尺度的降雨渗透方程,该方程结合了水和能源约束。该方程准确表示了流域尺度的降雨入渗过程,其导数有助于增强对入渗动力学的理解。此外,该方程式还利用包含 350 个流域的 CAMELS-US 数据集进行了验证。验证期间的平均 Nash-Sutcliffe 效率 (NSE) 表明,相对于 SCS-CN 模型,它提高了 0.07,表明其在不同流域和气候条件下具有强大的适应性。这些结果为基础水文理论的发展提供了有价值的见解。
更新日期:2025-05-27
down
wechat
bug