当前位置: X-MOL 学术Water Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deep reinforcement learning control as an innovative approach for urban drainage systems: review and prospects
Water Research ( IF 11.4 ) Pub Date : 2025-06-04 , DOI: 10.1016/j.watres.2025.123954
Zichen He, Wenchong Tian, Jiaying Wang, Hexiang Yan, Kunlun Xin, Tao Tao

Urban drainage systems (UDSs) are vital for managing stormwater and wastewater but face growing challenges due to urbanization, climate change and aging infrastructure. Real-time control (RTC) enhances UDSs’ performance and circumvents the need for system upgrades through adaptive management and repurposing existing systems. Meanwhile, deep reinforcement learning (DRL) has emerged as a promising tool to improve decision-making, stability in the dynamic, nonlinear and dimensional environments. Recent studies demonstrate the potential of deep reinforcement learning control (DRLC) in flood mitigation, sewer overflow reduction, water quality management, and wastewater treatment optimization. While DRLC offers transformative opportunities for UDSs control optimization, its widespread adoption and real-world implementation requires long-term effort to address technical and practical gaps. This review systematically evaluates DRLC’s progress in UDSs, summarizes the critical limitations, and proposes constructive insights, including data management, surrogate model design, benchmark frameworks construction, interpretability, safe control frameworks, and UDSs resilience enhancement to advance its future research.

中文翻译:

深度强化学习控制作为城市排水系统的创新方法:综述与展望

城市排水系统 (UDS) 对于管理雨水和废水至关重要,但由于城市化、气候变化和基础设施老化,城市排水系统面临着越来越大的挑战。实时控制 (RTC) 通过自适应管理和重新调整现有系统的用途,提高了 UDS 的性能,并避免了系统升级的需要。与此同时,深度强化学习 (DRL) 已成为一种很有前途的工具,可以改善动态、非线性和维度环境中的决策和稳定性。最近的研究表明,深度强化学习控制 (DRLC) 在减洪、减少下水道溢流、水质管理和废水处理优化方面的潜力。虽然 DRLC 为 UDS 控制优化提供了变革性的机会,但其广泛采用和实际实施需要长期努力来解决技术和实践差距。本文系统评价了 DRLC 在 UDS 方面的进展,总结了关键的局限性,并提出了建设性的见解,包括数据管理、代理模型设计、基准框架构建、可解释性、安全控制框架和 UDS 弹性增强,以推进其未来的研究。
更新日期:2025-06-04
down
wechat
bug