当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Disordered Rock Salt Anode for Long-Lived All-Vanadium Sodium-Ion Battery
Advanced Materials ( IF 27.4 ) Pub Date : 2025-06-04 , DOI: 10.1002/adma.202503143
Haichen Lin, Zishen Wang, Oliver Solares, Steven Huber, Jan Hofmann, Simon Danitz, Wei-Tao Peng, Ke Zhou, Ping-Che Lee, Haodong Liu, Zeyu Hui, Runze Liu, Mengchen Liu, Wei Tang, Junlin Wu, Zheng Chen, Karena W. Chapman, Shyue Ping Ong, Ping Liu

Rechargeable batteries wherein both the cathode and the anode are vanadium-based phases are promising grid-energy storage candidates, offering long cycle life and easy recycling. However, their system-level energy density must be improved to lower their footprint and operating costs. In this work, an all-vanadium sodium-ion battery that uses a new disordered rock salt (DRS) anode, Na3V2O5 (DRS-NVO), is proposed. For DRS-NVO, ≈2 Na+ ions can be reversibly cycled at ≈0.7 V versus Na/Na+. Structural characterization by X-ray diffraction and pair distribution function (PDF) analysis reveal increased local distortions during Na+ insertion but the overall DRS structure is maintained. The material shows exceptional stability and rate capability, achieving 10 000 cycles in half-cell tests at rates of up to 20 C. Molecular dynamics simulations produce voltage profiles and ion diffusivities in good agreement with experimental results. Pairing the DRS-NVO anode with a Na3V2(PO4)3 (NVP) cathode yields a cell (NVO|NVP) voltage of 2.7 V, with symmetric voltage profiles and an energy efficiency >93%. This all-vanadium sodium-ion battery exhibits excellent cycling stability, retaining 80% of its capacity after 3 000 cycles. Levelized cost-of-storage (LCOS) evaluations based on a cell design model confirm the cost-effectiveness, positioning NVO|NVP as a competitive grid-scale energy storage solution.

中文翻译:

用于长寿命全钒钠离子电池的无序岩盐阳极

阴极和阳极均为钒基相的可充电电池是有前途的电网储能候选者,具有较长的循环寿命和易于回收的特点。然而,必须提高其系统级能量密度,以降低其占地面积和运营成本。在这项工作中,提出了一种使用新型无序岩盐 (DRS) 阳极 Na3V2O5 (DRS-NVO) 的全钒钠离子电池。对于 DRS-NVO,≈2 Na+ 离子可以在 ≈0.7 V 与 Na/Na+ 相比下可逆循环。通过 X 射线衍射和对分布函数 (PDF) 分析进行的结构表征显示,在 Na+ 插入过程中局部变形增加,但整体 DRS 结构保持不变。该材料表现出卓越的稳定性和倍率能力,在高达 20 C 的半电池测试中实现了 10 000 次循环。分子动力学模拟产生的电压曲线和离子扩散率与实验结果非常吻合。将 DRS-NVO 阳极与 Na3V2(PO43 (NVP) 阴极配对可产生电池 (NVO|NVP) 电压为 2.7 V,具有对称的电压曲线和能效 >93%。这种全钒钠离子电池表现出优异的循环稳定性,在 3000 次循环后仍能保持 80% 的容量。基于单元设计模型的平准化存储成本 (LCOS) 评估证实了成本效益,将 NVO|NVP 作为具有竞争力的电网规模储能解决方案。
更新日期:2025-06-04
down
wechat
bug