当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Disordered Rock Salt Anode for Long-Lived All-Vanadium Sodium-Ion Battery
Advanced Materials ( IF 27.4 ) Pub Date : 2025-06-04 , DOI: 10.1002/adma.202503143
Haichen Lin, Zishen Wang, Oliver Solares, Steven Huber, Jan Hofmann, Simon Danitz, Wei-Tao Peng, Ke Zhou, Ping-Che Lee, Haodong Liu, Zeyu Hui, Runze Liu, Mengchen Liu, Wei Tang, Junlin Wu, Zheng Chen, Karena W. Chapman, Shyue Ping Ong, Ping Liu
Advanced Materials ( IF 27.4 ) Pub Date : 2025-06-04 , DOI: 10.1002/adma.202503143
Haichen Lin, Zishen Wang, Oliver Solares, Steven Huber, Jan Hofmann, Simon Danitz, Wei-Tao Peng, Ke Zhou, Ping-Che Lee, Haodong Liu, Zeyu Hui, Runze Liu, Mengchen Liu, Wei Tang, Junlin Wu, Zheng Chen, Karena W. Chapman, Shyue Ping Ong, Ping Liu
![]() |
Rechargeable batteries wherein both the cathode and the anode are vanadium-based phases are promising grid-energy storage candidates, offering long cycle life and easy recycling. However, their system-level energy density must be improved to lower their footprint and operating costs. In this work, an all-vanadium sodium-ion battery that uses a new disordered rock salt (DRS) anode, Na3V2O5 (DRS-NVO), is proposed. For DRS-NVO, ≈2 Na+ ions can be reversibly cycled at ≈0.7 V versus Na/Na+. Structural characterization by X-ray diffraction and pair distribution function (PDF) analysis reveal increased local distortions during Na+ insertion but the overall DRS structure is maintained. The material shows exceptional stability and rate capability, achieving 10 000 cycles in half-cell tests at rates of up to 20 C. Molecular dynamics simulations produce voltage profiles and ion diffusivities in good agreement with experimental results. Pairing the DRS-NVO anode with a Na3V2(PO4)3 (NVP) cathode yields a cell (NVO|NVP) voltage of 2.7 V, with symmetric voltage profiles and an energy efficiency >93%. This all-vanadium sodium-ion battery exhibits excellent cycling stability, retaining 80% of its capacity after 3 000 cycles. Levelized cost-of-storage (LCOS) evaluations based on a cell design model confirm the cost-effectiveness, positioning NVO|NVP as a competitive grid-scale energy storage solution.
中文翻译:
用于长寿命全钒钠离子电池的无序岩盐阳极
阴极和阳极均为钒基相的可充电电池是有前途的电网储能候选者,具有较长的循环寿命和易于回收的特点。然而,必须提高其系统级能量密度,以降低其占地面积和运营成本。在这项工作中,提出了一种使用新型无序岩盐 (DRS) 阳极 Na3V2O5 (DRS-NVO) 的全钒钠离子电池。对于 DRS-NVO,≈2 Na+ 离子可以在 ≈0.7 V 与 Na/Na+ 相比下可逆循环。通过 X 射线衍射和对分布函数 (PDF) 分析进行的结构表征显示,在 Na+ 插入过程中局部变形增加,但整体 DRS 结构保持不变。该材料表现出卓越的稳定性和倍率能力,在高达 20 C 的半电池测试中实现了 10 000 次循环。分子动力学模拟产生的电压曲线和离子扩散率与实验结果非常吻合。将 DRS-NVO 阳极与 Na3V2(PO4)3 (NVP) 阴极配对可产生电池 (NVO|NVP) 电压为 2.7 V,具有对称的电压曲线和能效 >93%。这种全钒钠离子电池表现出优异的循环稳定性,在 3000 次循环后仍能保持 80% 的容量。基于单元设计模型的平准化存储成本 (LCOS) 评估证实了成本效益,将 NVO|NVP 作为具有竞争力的电网规模储能解决方案。
更新日期:2025-06-04
中文翻译:

用于长寿命全钒钠离子电池的无序岩盐阳极
阴极和阳极均为钒基相的可充电电池是有前途的电网储能候选者,具有较长的循环寿命和易于回收的特点。然而,必须提高其系统级能量密度,以降低其占地面积和运营成本。在这项工作中,提出了一种使用新型无序岩盐 (DRS) 阳极 Na3V2O5 (DRS-NVO) 的全钒钠离子电池。对于 DRS-NVO,≈2 Na+ 离子可以在 ≈0.7 V 与 Na/Na+ 相比下可逆循环。通过 X 射线衍射和对分布函数 (PDF) 分析进行的结构表征显示,在 Na+ 插入过程中局部变形增加,但整体 DRS 结构保持不变。该材料表现出卓越的稳定性和倍率能力,在高达 20 C 的半电池测试中实现了 10 000 次循环。分子动力学模拟产生的电压曲线和离子扩散率与实验结果非常吻合。将 DRS-NVO 阳极与 Na3V2(PO4)3 (NVP) 阴极配对可产生电池 (NVO|NVP) 电压为 2.7 V,具有对称的电压曲线和能效 >93%。这种全钒钠离子电池表现出优异的循环稳定性,在 3000 次循环后仍能保持 80% 的容量。基于单元设计模型的平准化存储成本 (LCOS) 评估证实了成本效益,将 NVO|NVP 作为具有竞争力的电网规模储能解决方案。