当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Metabolism-Oriented Strategy to Directly Generate Photosensitizer-Engineered Extracellular Vesicles from Cancer Cells
Advanced Materials ( IF 27.4 ) Pub Date : 2025-06-04 , DOI: 10.1002/adma.202505726
Dandan Wang, Xingang Liu, Xianming Zhang, Thach Tuan Pham, Jiahao Zhuang, Bowen Li, Kok Chan Chong, Can Liu, Yi Shan, Min Wu, Minh T. N. Le, Kai Li, Bin Liu
Advanced Materials ( IF 27.4 ) Pub Date : 2025-06-04 , DOI: 10.1002/adma.202505726
Dandan Wang, Xingang Liu, Xianming Zhang, Thach Tuan Pham, Jiahao Zhuang, Bowen Li, Kok Chan Chong, Can Liu, Yi Shan, Min Wu, Minh T. N. Le, Kai Li, Bin Liu
![]() |
Extracellular vesicles (EVs) hold great potential for delivering cancer therapy drugs. However, limited efficiency and sophisticated drug encapsulation procedures have hindered their effectiveness. Herein, β-D-glucose is modified with the synthesized photosensitizer (1-(4-carboxybutyl)-4-(7-(4-(diphenylamino)phenyl)benzo[c][1,2,5] thiadiazol-4-yl)pyridin-1-ium, named TB) via amide bond to form a glucose-conjugated photosensitizer, referred to as TBG, which is further utilized as a metabolic substrate for cancer cells. Through simple co-incubation with TBG, cancer cells directly generate TBG-engineered EVs in situ via a metabolism-driven process, in which glucose transporters play a critical role. Notably, a higher yield of engineered EVs is observed in TBG-treated cells compared to the TB-treated group. This enhancement could be attributed to increased glucose transporter activity and adenosine triphosphate (ATP) synthesis, highlighting the significance of glucose-modified chemicals. Remarkably, this metabolism-driven strategy has been successfully validated across three cell lines, highlighting its versatility and broad applicability. The extracted TBG-EVs maintain a strong targeting ability toward cancer cells and demonstrate enhanced efficacy in photodynamic therapy for tumor ablation. The study offers an alternative strategy to efficiently produce cargo-loading EVs via direct biological metabolism.
中文翻译:
一种以代谢为导向的策略,可从癌细胞直接生成光敏剂工程的细胞外囊泡
细胞外囊泡 (EV) 在递送癌症治疗药物方面具有巨大潜力。然而,有限的效率和复杂的药物包埋程序阻碍了其有效性。本文用合成的光敏剂(1-(4-羧基丁基)-4-(7-(4-(二苯氨基)苯基)苯并[c][1,2,5]噻二唑-4-基)吡啶-1-铉通过酰胺键修饰β-D-葡萄糖形成葡萄糖共轭光敏剂,称为 TBG,进一步用作癌细胞的代谢底物。通过与 TBG 的简单共孵育,癌细胞通过新陈代谢驱动的过程直接原位产生 TBG 工程的 EV,其中葡萄糖转运蛋白起着关键作用。值得注意的是,与 TB 处理组相比,在 TBG 处理的细胞中观察到工程化 EV 的产量更高。这种增强可归因于葡萄糖转运蛋白活性和三磷酸腺苷 (ATP) 合成的增加,突出了葡萄糖修饰化学物质的重要性。值得注意的是,这种代谢驱动的策略已在三种细胞系中成功验证,凸显了其多功能性和广泛适用性。提取的 TBG-EVs 对癌细胞保持了很强的靶向能力,并在光动力疗法中表现出增强的肿瘤消融疗效。该研究提供了一种通过直接生物代谢有效生产载货 EV 的替代策略。
更新日期:2025-06-04
中文翻译:

一种以代谢为导向的策略,可从癌细胞直接生成光敏剂工程的细胞外囊泡
细胞外囊泡 (EV) 在递送癌症治疗药物方面具有巨大潜力。然而,有限的效率和复杂的药物包埋程序阻碍了其有效性。本文用合成的光敏剂(1-(4-羧基丁基)-4-(7-(4-(二苯氨基)苯基)苯并[c][1,2,5]噻二唑-4-基)吡啶-1-铉通过酰胺键修饰β-D-葡萄糖形成葡萄糖共轭光敏剂,称为 TBG,进一步用作癌细胞的代谢底物。通过与 TBG 的简单共孵育,癌细胞通过新陈代谢驱动的过程直接原位产生 TBG 工程的 EV,其中葡萄糖转运蛋白起着关键作用。值得注意的是,与 TB 处理组相比,在 TBG 处理的细胞中观察到工程化 EV 的产量更高。这种增强可归因于葡萄糖转运蛋白活性和三磷酸腺苷 (ATP) 合成的增加,突出了葡萄糖修饰化学物质的重要性。值得注意的是,这种代谢驱动的策略已在三种细胞系中成功验证,凸显了其多功能性和广泛适用性。提取的 TBG-EVs 对癌细胞保持了很强的靶向能力,并在光动力疗法中表现出增强的肿瘤消融疗效。该研究提供了一种通过直接生物代谢有效生产载货 EV 的替代策略。