当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Spatiotemporal Charging Single-Atom Nanozymes Activated Pyroptosis for Antitumor Immunotherapy via Bioorthogonal Disruption of Succination and Reinvigorating T Lymphocytes
Advanced Materials ( IF 27.4 ) Pub Date : 2025-06-04 , DOI: 10.1002/adma.202502940
Rui Niu, Bin Zhang, Yang Liu, Bo Xu, Ruiping Deng, Shuyan Song, Kai Liu, Yinghui Wang, Hongjie Zhang
Advanced Materials ( IF 27.4 ) Pub Date : 2025-06-04 , DOI: 10.1002/adma.202502940
Rui Niu, Bin Zhang, Yang Liu, Bo Xu, Ruiping Deng, Shuyan Song, Kai Liu, Yinghui Wang, Hongjie Zhang
![]() |
Pyroptosis can trigger strong immunogenic cell death (ICD) of tumor cells for antitumor immunotherapy. However, metabolic disorders of fumarate in the tumor microenvironment (TME) can significantly reduce the pyroptosis rate and render T lymphocytes dysfunctional. Here, the ultrasound (US)-driven piezoelectric charges assisted Fe-based SAzyme (BFTM) with co-loaded triphenylphosphonium (TPP) and methyl (Z)-4-(chloro(2-phenylhydrazono)methyl)benzoate (MMB, a bioorthogonal reagent of fumarate) for activating pyroptosis and regulating fumarate metabolism is developed. Positive and negative charges generated by barium titanate (BTO) regulate the electron cloud density of single-Fe atom, endowing the BFTM with efficient reactive oxygen species (ROS) production ability for triggering caspase-1 related gasdermin D (GSDMD) mediated pyroptosis. Meanwhile, the consumption of intracellular fumarate through bioorthogonal reaction not only prevented the succinate of cysteines in GSDMD, causing it to be activated and oligomerized by caspase-1 to enhance pyroptosis but also restored the phosphorylation of ZAP70 to normalize the T cell receptor (TCR) signaling pathways for reinvigorating CD8+ T cells. In short, US-driven BFTM as a pyroptosis initiator and metabolism immune activator significantly enhances antitumor immunotherapy effects via ROS storms, fumarate depletion, triggering pyroptosis, and reinvigorating T lymphocytes.
中文翻译:
时空充电单原子纳米酶通过生物正交破坏琥珀酸和恢复 T 淋巴细胞激活焦亡用于抗肿瘤免疫治疗
焦亡可触发肿瘤细胞的强免疫原性细胞死亡 (ICD) 进行抗肿瘤免疫治疗。然而,肿瘤微环境 (TME) 中富马酸盐的代谢紊乱可以显着降低焦亡率并使 T 淋巴细胞功能障碍。在这里,超声 (US) 驱动的压电电荷辅助铁基 SAzyme (BFTM) 与共负载的三苯基膦 (TPP) 和甲基 (Z)-4-(氯(2-苯肼唑诺)甲基)苯甲酸盐 (MMB,一种富马酸盐的生物正交试剂) 被开发用于激活焦亡和调节富马酸盐代谢。钛酸钡 (BTO) 产生的正电荷和负电荷调节单 Fe 原子的电子云密度,使 BFTM 具有高效的活性氧 (ROS) 产生能力,以触发 caspase-1 相关 gasdermin D (GSDMD) 介导的焦亡。同时,通过生物正交反应消耗细胞内富马酸不仅阻止了 GSDMD 中半月氨酸的琥珀酸,使其被 caspase-1 激活和寡聚化以增强焦亡,而且还恢复了 ZAP70 的磷酸化,使 T 细胞受体 (TCR) 信号通路正常化,从而重新激活 CD8+T 细胞。简而言之,美国驱动的 BFTM 作为焦亡启动剂和代谢免疫激活剂,通过 ROS 风暴、富马酸盐耗竭、触发焦亡和活化 T 淋巴细胞显着增强抗肿瘤免疫治疗效果。
更新日期:2025-06-04
中文翻译:

时空充电单原子纳米酶通过生物正交破坏琥珀酸和恢复 T 淋巴细胞激活焦亡用于抗肿瘤免疫治疗
焦亡可触发肿瘤细胞的强免疫原性细胞死亡 (ICD) 进行抗肿瘤免疫治疗。然而,肿瘤微环境 (TME) 中富马酸盐的代谢紊乱可以显着降低焦亡率并使 T 淋巴细胞功能障碍。在这里,超声 (US) 驱动的压电电荷辅助铁基 SAzyme (BFTM) 与共负载的三苯基膦 (TPP) 和甲基 (Z)-4-(氯(2-苯肼唑诺)甲基)苯甲酸盐 (MMB,一种富马酸盐的生物正交试剂) 被开发用于激活焦亡和调节富马酸盐代谢。钛酸钡 (BTO) 产生的正电荷和负电荷调节单 Fe 原子的电子云密度,使 BFTM 具有高效的活性氧 (ROS) 产生能力,以触发 caspase-1 相关 gasdermin D (GSDMD) 介导的焦亡。同时,通过生物正交反应消耗细胞内富马酸不仅阻止了 GSDMD 中半月氨酸的琥珀酸,使其被 caspase-1 激活和寡聚化以增强焦亡,而且还恢复了 ZAP70 的磷酸化,使 T 细胞受体 (TCR) 信号通路正常化,从而重新激活 CD8+T 细胞。简而言之,美国驱动的 BFTM 作为焦亡启动剂和代谢免疫激活剂,通过 ROS 风暴、富马酸盐耗竭、触发焦亡和活化 T 淋巴细胞显着增强抗肿瘤免疫治疗效果。