当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Topology in Biological Piezoelectric Materials
Advanced Materials ( IF 27.4 ) Pub Date : 2025-06-04 , DOI: 10.1002/adma.202500466
Chen Chen, Yanhu Zhang, Yi Zheng, Yi Zhang, Hongyi Liu, Jiang Wu, Liang Yang, Zhengbao Yang

Topology is fundamental in determining the properties and functions of biological piezoelectric materials by influencing service performances across multiple scales, from nanoscale molecular arrangements to macroscopic assembly structures. At each scale, topology governs electrical, mechanical, and biological behaviors, facilitating multifunctional integration and multi-field coupling advances. Recent progress demonstrates the potential of topological optimization to enhance piezoelectric coefficients and enable complex functionalities. Strategies such as multi-scale design, machine learning-guided optimization, and precision fabrication techniques are being explored to address persistent challenges, including limited energy conversion efficiency, long-term stability, and biocompatibility. Critical applications include health monitoring, biosensing, energy harvesting, and disease treatment, highlighting opportunities and unresolved technical bottlenecks. Future research directions are discussed to present theoretical insights and practical pathways to the development of biological piezoelectric materials.

中文翻译:

生物压电材料中的拓扑结构

拓扑结构是确定生物压电材料特性和功能的基础,它影响从纳米级分子排列到宏观组装结构等多个尺度的服务性能。在每个尺度上,拓扑结构都控制着电气、机械和生物行为,促进了多功能集成和多场耦合的进步。最近的进展证明了拓扑优化在增强压电系数和实现复杂功能方面的潜力。正在探索多尺度设计、机器学习指导的优化和精密制造技术等策略,以应对持续存在的挑战,包括有限的能量转换效率、长期稳定性和生物相容性。关键应用包括健康监测、生物传感、能量收集和疾病治疗,突出了机会和未解决的技术瓶颈。讨论了未来的研究方向,为生物压电材料的发展提供了理论见解和实践途径。
更新日期:2025-06-04
down
wechat
bug