当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Carbon-Nanotube Synergized Robust Enzymatic-Fuel-Cell in Gel Microneedle for Self-Powered Monitoring and Forecasting
Advanced Materials ( IF 27.4 ) Pub Date : 2025-06-04 , DOI: 10.1002/adma.202313837
Yuting Guo, Yinghui Shang, Xiaoke Han, Yujing Tang, Teng Ma, Hongdou Shen, Yu Guo, Xia Wang, Dongbei Wu, Qigang Wang
Advanced Materials ( IF 27.4 ) Pub Date : 2025-06-04 , DOI: 10.1002/adma.202313837
Yuting Guo, Yinghui Shang, Xiaoke Han, Yujing Tang, Teng Ma, Hongdou Shen, Yu Guo, Xia Wang, Dongbei Wu, Qigang Wang
![]() |
Implementation of an enzymatic biofuel cell-based wearable device for the self-powered monitoring of dynamic biomarkers in interstitial fluid is crucial for precision medicine. Such devices are mainly limited by unimpaired immobilization and electron transformation of enzymes on electrode. Here, a gel microneedles bioelectrode utilized is designed by interfacial enzymatic polymerization from the aligned carbon fibers for initiating rigid gel shell array on surface, ensuring intact encapsulation of three oxidases with efficient substrate osmosis. Carbon nanotubes are employed to bridge each carbon fiber with the oxidase, accelerating the electrons transfer from active center of enzyme to external circuit. This strategy, which achieves a maximum power density of 1.98 mW cm−2 at 20 mm glucose as biofuel cell, with glucose detection limits as low as 0.2 mm. Similarly, the detection limits for lactic acid and uric acid can be as low as 0.2 and 0.05 mm. Validation in diabetic rats with the integration of data capture and an AI-assisted analyst system, enables precise detection of stimuli, such as food intake and exercise, allowing for the accurate prediction of biomarker dynamics in the next 20 min. This integrated system marks a significant stride toward the realization of truly personalized and responsive healthcare solutions.
中文翻译:
碳纳米管协同稳健的酶燃料电池在凝胶微针中,用于自供电监测和预测
实施基于酶生物燃料电池的可穿戴设备,用于自主监测间质液中的动态生物标志物,对于精准医疗至关重要。这种装置主要受到电极上酶的未受损固定和电子转化的限制。在这里,通过对准碳纤维的界面酶促聚合设计了所使用的凝胶微针生物电极,用于在表面引发刚性凝胶壳阵列,确保三种氧化酶的完整封装具有高效的底物渗透。碳纳米管用于将每根碳纤维与氧化酶桥接,加速电子从酶的活性中心转移到外部电路。该策略在 20 m 葡萄糖作为生物燃料电池时实现了 1.98 mW cm-2 的最大功率密度,葡萄糖检测限低至 0.2 m m。同样,乳酸和尿酸的检出限可低至 0.2 和 0.05 mm。通过集成数据捕获和 AI 辅助分析系统,在糖尿病大鼠中进行验证,可以精确检测刺激,例如食物摄入和运动,从而准确预测未来 20 分钟内的生物标志物动态。这个集成系统标志着朝着实现真正个性化和响应式的医疗保健解决方案迈出了重要一步。
更新日期:2025-06-04
中文翻译:

碳纳米管协同稳健的酶燃料电池在凝胶微针中,用于自供电监测和预测
实施基于酶生物燃料电池的可穿戴设备,用于自主监测间质液中的动态生物标志物,对于精准医疗至关重要。这种装置主要受到电极上酶的未受损固定和电子转化的限制。在这里,通过对准碳纤维的界面酶促聚合设计了所使用的凝胶微针生物电极,用于在表面引发刚性凝胶壳阵列,确保三种氧化酶的完整封装具有高效的底物渗透。碳纳米管用于将每根碳纤维与氧化酶桥接,加速电子从酶的活性中心转移到外部电路。该策略在 20 m 葡萄糖作为生物燃料电池时实现了 1.98 mW cm-2 的最大功率密度,葡萄糖检测限低至 0.2 m m。同样,乳酸和尿酸的检出限可低至 0.2 和 0.05 mm。通过集成数据捕获和 AI 辅助分析系统,在糖尿病大鼠中进行验证,可以精确检测刺激,例如食物摄入和运动,从而准确预测未来 20 分钟内的生物标志物动态。这个集成系统标志着朝着实现真正个性化和响应式的医疗保健解决方案迈出了重要一步。