当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photocatalytic Cyclohexanone Oxime Synthesis from Ambient Air and KA Oil
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2025-06-04 , DOI: 10.1021/jacs.5c03187
Shu-Lin Meng, Chen Zhang, Jia-Hao Li, Chen-Ho Tung, Li-Zhu Wu

Photocatalysis offers a sustainable alternative for cyclohexanone oxime synthesis. However, multielectron and multiproton chemical transformations and synergic C–N coupling have posed tremendous barriers. To overcome these challenges, we intimately integrate quantum dot (QD) photocatalysts with a molecular iron–polypyridine complex and achieve photocatalytic cyclohexanone oxime formation for the first time. Mechanistic studies reveal that the close contact between CdS QDs and molecular iron–polypyridine complex boosts rapid photogenerated electron transfer to drive fast and continuous NOx reduction. Simultaneously, photogenerated holes perform cyclohexanol oxidation to cyclohexanone coordinated to CdS QDs. More strikingly, the controllable formation and coordination with NH2OH intermediate by the molecular complex enable synergic C–N coupling for cyclohexanone oxime synthesis with near-unity NOx conversion and 82.5 ± 1.7% selectivity. Through tandem plasma-driven N2 oxidation and photocatalysis, 0.395 g of cyclohexanone oxime is obtained from ambient air and ketone–alcohol (KA) oil, which offers a competitive candidate for cyclohexanone oxime synthesis and encourages value-added nitrogenous chemical transformation from abundant resource molecules.

中文翻译:

从环境空气和 KA 油光催化合成环己酮肟

光催化为环己酮肟合成提供了一种可持续的替代方案。然而,多电子和多质子化学转变以及协同 C-N 耦合构成了巨大的障碍。为了克服这些挑战,我们将量子点 (QD) 光催化剂与分子铁-聚吡啶复合物紧密结合,并首次实现了光催化环己酮肟的形成。机理研究表明,CdS QDs 和分子铁-聚吡啶复合物之间的紧密接触促进了快速的光生电子转移,从而推动了快速和连续的 NOx 还原。同时,光生空穴将环己醇氧化成与 CdS QD 配位的环己酮。更引人注目的是,分子复合物与 NH2OH 中间体的可控形成和配位使环己酮肟合成的协同 C-N 偶联具有接近统一的 NOx 转化率和 82.5 ± 1.7% 的选择性。通过串联等离子体驱动的 N2 氧化和光催化,从环境空气和酮醇 (KA) 油中获得 0.395 g 环己酮肟,这为环己酮肟合成提供了有竞争力的候选者,并促进了从丰富的资源分子中进行增值的含氮化学转化。
更新日期:2025-06-04
down
wechat
bug